Integrate using trigo substitution int dx/(sqrt(x^2-4x))^3 ?

1 Answer
Jul 14, 2018

(2-x)/(4sqrt((x-4)x)+C

Explanation:

At first we Substitute u=x-2,du=dx

and we get

int1/(u^2-4)^(3/2)du
now we substitue u=2sec(s),du=2tan(s)sec(s)ds

then we get
1/4int cot(s)csc(s)ds=-csc(s)/4+C
with

s=sec(-1)(u/2) we get

-1/4csc(sec^(-1)(u/2))+C
note that

csc(sec^(-1)(z))=1/sqrt(1-1/z^2) then we get

-u/(4sqrt(u^2-4))+C
with u=x-2

we get the result
(2-x)/(4sqrt((x-4)x)+C