Limit x tends to 0+ sinx^sinxsinxsinx ?

1 Answer
Jul 12, 2016

The answer is lim_{x->0^{+}}(sin(x))^{sin(x)}=1.

Explanation:

First, let y=(sin(x))^{sin(x)}. Then ln(y)=sin(x)ln(sin(x))=(ln(sin(x)))/csc(x). Now use L'Hopital's Rule to evaluate the limit of this expression (it is an infty/infty indeterminate form).

lim_{x->0+} (ln(sin(x)))/csc(x)=lim_{x->0+}(1/sin(x) * cos(x))/(-cot(x)*csc(x))

=lim_{x->0+}(-tan(x))=0

Therefore, ln(lim_{x->0+}y)=lim_{x->0}ln(y)=lim_{x->0+}sin(x)ln(sin(x))=0. Exponentiation now implies that

lim_{x->0+}(sin(x))^{sin(x)}=lim_{x->0+}y=e^{0}=1.

The graph of (sin(x))^{sin(x)} confirms this visually.

graph{sin(x)^(sin(x)) [-4.054, 4.065, -2.034, 2.025]}