Solve the equation x^4+4x^3+8=0x4+4x3+8=0?

Obtain the resolvent cubics, by Descartes' method and by Ferrari's method, of the equation x^4+4x^3+8=0x4+4x3+8=0. Are the cubics the same? Further, Use either method to obtain the roots of this equation.

1 Answer
Mar 24, 2017

See below.

Explanation:

Consider the polynomial

x^4+2ax^3+b=0x4+2ax3+b=0

and also the expansion

(x^2+ax+xi)^2=x^4+2ax^3+(a^2+2xi)x^2+2axix+xi^2(x2+ax+ξ)2=x4+2ax3+(a2+2ξ)x2+2aξx+ξ2

(here xiξ is a dummy parameter)

now substituting x^4+2ax^3 = -bx4+2ax3=b we obtain

(x^2+ax+xi)^2=(a^2+2xi)x^2+2axix+xi^2-b(x2+ax+ξ)2=(a2+2ξ)x2+2aξx+ξ2b

and now choosing properly xiξ to make (a^2+2xi)x^2+2axix+xi^2-b(a2+2ξ)x2+2aξx+ξ2b a square with

2 xi^3- 2 b xi -a^2 b=02ξ32bξa2b=0

or

xi^3-8xi-16=0ξ38ξ16=0

///////////////////////////////////////////////////////////////////////////////////////////
Note that solving (a^2+2xi)x^2+2axix+xi^2-b=0(a2+2ξ)x2+2aξx+ξ2b=0 or

x=(-a xi pm sqrt[a^2 b + 2 b xi - 2 xi^3])/(a^2 + 2 xi)x=aξ±a2b+2bξ2ξ3a2+2ξ if we choose
xi_0ξ0 such that a^2 b + 2 b xi_0 - 2 xi_0^3=0a2b+2bξ02ξ30=0 then

(a^2+2xi_0)x^2+2axi_0x+xi_0^2-b = (a^2+2xi_0)(x+a xi_0)^2(a2+2ξ0)x2+2aξ0x+ξ20b=(a2+2ξ0)(x+aξ0)2
////////////////////////////////////////////////////////////////////////////////////////////

Now solving for xiξ

xi=xi_0=1/3 (216 - 24 sqrt[57])^(1/3) + (2 (9 + sqrt[57])^(1/3))/3^(2/3)ξ=ξ0=13(2162457)13+2(9+57)13323 which is the only real root.

Now

(a^2+2xi_0)x^2+2axi_0x+xi_0^2-b = (a^2+2xi_0)(x+ axi_0)^2(a2+2ξ0)x2+2aξ0x+ξ20b=(a2+2ξ0)(x+aξ0)2

and the former quartic remains

(x^2+ax+xi_0)^2=(a^2+2xi_0)(x+ axi_0)^2(x2+ax+ξ0)2=(a2+2ξ0)(x+aξ0)2 or

(x^2+ax+xi_0)^2-(a^2+2xi_0)(x+ axi_0)^2=0(x2+ax+ξ0)2(a2+2ξ0)(x+aξ0)2=0 or

(x^2+ax+xi_0+sqrt(a^2+2xi_0)(x+axi_0))(x^2+ax+xi_0-sqrt(a^2+2xi_0)(x+axi_0))=0(x2+ax+ξ0+a2+2ξ0(x+aξ0))(x2+ax+ξ0a2+2ξ0(x+aξ0))=0

resulting in the resolution of

{(x^2+(a+sqrt(a^2+2xi_0))x+xi_0+axi_0sqrt(a^2+2xi_0)=0),(x^2+(a-sqrt(a^2+2xi_0))x+xi_0-axi_0sqrt(a^2+2xi_0)=0):}

This is left as an exercise for the proficient reader.

NOTE: This is the so called Ferrari's method.