What are the asymptotes of f(x)=-x/((x^2-8)(5x+2)) ?

1 Answer
May 27, 2017

vertical asymptotes: x = +- 2sqrt(2); x = -2/5
horizontal asymptotes: y = 0

Explanation:

Given: -x/((x^2-8)(5x+2))

Factor the difference of squares in the denominator a^2 - b^2 = (a-b)(a+b):

(x^2 - (sqrt(8))^2) = (x - sqrt(8))(x + sqrt(8))

sqrt(8) = sqrt(4*2) = 2sqrt(2)

Therefore:
-x/((x^2-8)(5x+2)) = -x/((x-2sqrt(2))(x+2sqrt(2))(5x+2))

Find vertical asymptotes D(x) = 0:

vertical asymptotes: x = +- 2sqrt(2); x = -2/5

Find horizontal asymptotes using Precalculus for a rational function: (N(x))/(D(x)) = (a_nx^n + ...)/(b_mx^m + ...)

When n < m horizontal asymptote is y = 0

Using Calculus to find horizontal asymptotes:

lim x->oo -x/((x^2-8)(5x+2)) =

lim x->oo -x/(5x^3+2x^2-40x+16)

Divide all by the largest x in the denominator:

lim x->oo (-x/x^3)/((5x^3)/x^3 + (2x^2)/x^3 - (40x)/x^3 + 16/x^3)

lim x->oo (-1/x^2)/(5 + 2/x - 40/x^2 + 16/x^3) = 0/5 = 0