What does (1-3i)/sqrt(1+3i) equal?
1 Answer
(1-3i)/sqrt(1+3i)
=(-2sqrt((sqrt(10)+1)/2)+3/2sqrt((sqrt(10)-1)/2))-(2sqrt((sqrt(10)-1)/2)+3/2sqrt((sqrt(10)+1)/2))i
Explanation:
In general the square roots of
+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)
In the case of
sqrt(1+3i)
=sqrt((sqrt(1^2+3^2)+1)/2)+sqrt((sqrt(1^2+3^2)-1)/2)i
=sqrt((sqrt(10)+1)/2) + sqrt((sqrt(10)-1)/2)i
So:
(1-3i)/sqrt(1+3i)
=((1-3i)sqrt(1+3i))/(1+3i)
=((1-3i)^2 sqrt(1+3i))/((1+3i)(1-3i))
=((1-3i)^2 sqrt(1+3i))/4
=1/4(1-3i)^2 (sqrt((sqrt(10)+1)/2) + sqrt((sqrt(10)-1)/2)i)
=1/4(-8-6i)(sqrt((sqrt(10)+1)/2) + sqrt((sqrt(10)-1)/2)i)
=-1/2(4+3i)(sqrt((sqrt(10)+1)/2) + sqrt((sqrt(10)-1)/2)i)
=-1/2((4sqrt((sqrt(10)+1)/2)-3sqrt((sqrt(10)-1)/2))+(4sqrt((sqrt(10)-1)/2)+3sqrt((sqrt(10)+1)/2))i)
=(-2sqrt((sqrt(10)+1)/2)+3/2sqrt((sqrt(10)-1)/2))-(2sqrt((sqrt(10)-1)/2)+3/2sqrt((sqrt(10)+1)/2))i