What does (3+i)13 equal in a+bi form?
1 Answer
Nov 10, 2015
Explanation:
3+i=√10(cos(α)+isin(α)) whereα=arctan(13)
So
3√3+i=3√√10(cos(α3)+isin(α3))
=6√10(cos(13arctan(13))+isin(13arctan(13)))
=6√10cos(13arctan(13))+6√10sin(13arctan(13))i
Since
The two other cube roots of
ω(6√10cos(13arctan(13))+6√10sin(13arctan(13))i)
=6√10cos(13arctan(13)+2π3)+6√10sin(13arctan(13)+2π3)i
ω2(6√10cos(13arctan(13))+6√10sin(13arctan(13))i)
=6√10cos(13arctan(13)+4π3)+6√10sin(13arctan(13)+4π3)i