What does (3+i)13 equal in a+bi form?

1 Answer
Nov 10, 2015

610cos(13arctan(13))+610sin(13arctan(13))i

Explanation:

3+i=10(cos(α)+isin(α)) where α=arctan(13)

So

33+i=310(cos(α3)+isin(α3))

=610(cos(13arctan(13))+isin(13arctan(13)))

=610cos(13arctan(13))+610sin(13arctan(13))i

Since 3+i is in Q1, this principal cube root of 3+i is also in Q1.

The two other cube roots of 3+i are expressible using the primitive Complex cube root of unity ω=12+32i:

ω(610cos(13arctan(13))+610sin(13arctan(13))i)

=610cos(13arctan(13)+2π3)+610sin(13arctan(13)+2π3)i

ω2(610cos(13arctan(13))+610sin(13arctan(13))i)

=610cos(13arctan(13)+4π3)+610sin(13arctan(13)+4π3)i