What is 625^(1/8)62518 in radical form?

1 Answer
May 1, 2017

root(8)(625) = sqrt(5)8625=5

Explanation:

Use the exponent rules sqrt(x) = x^(1/2)x=x12; " "root(3)(y) = y^(1/3) 3y=y13

and the exponent power rule (x^m)^n = x^(m*n)(xm)n=xmn

625^(1/8) = root(8)(625)62518=8625

Simplified: 625^(1/8) = (625^(1/2))^(1/4) = ((625^(1/2))^(1/2))^(1/2)62518=(62512)14=((62512)12)12

625^(1/8) = sqrt(sqrt(sqrt(625))) = sqrt(sqrt(25)) = sqrt(5)62518=625=25=5