What is f(x) = int 1/(x-3)-1/(x-2) dxf(x)=1x31x2dx if f(-1)=6 f(1)=6?

1 Answer
Aug 10, 2017

f(x) = ln|((x - 3)/(x - 2))| + 6 - ln(4/3)f(x)=ln(x3x2)+6ln(43)

Explanation:

We use the commonly used result int (1/x) dx = ln|x|(1x)dx=ln|x| to solve.

f(x) = ln|x - 3| - ln|x - 2| + Cf(x)=ln|x3|ln|x2|+C

f(x) = ln|(x- 3)/(x - 2)| + Cf(x)=lnx3x2+C

Now we determine the value of the constant of integration.

6 = ln|(-1 - 3)/(-1 - 2)| + C6=ln1312+C

6 = ln|4/3| + C6=ln43+C

C = 6 - ln(4/3)C=6ln(43)

So the function is

f(x) = ln|((x - 3)/(x - 2))| + 6 - ln(4/3)f(x)=ln(x3x2)+6ln(43)

Hopefully this helps!