What is F(x) = int 3x^2+e^(2-2x) dxF(x)=3x2+e22xdx if F(0) = 1 F(0)=1?

1 Answer
Jan 12, 2017

F(x) = x^3 +e^2/2 (1-e^(-2x)) +1F(x)=x3+e22(1e2x)+1

Explanation:

int 3x^2+e^(2-2x) dx = 3intx^2 dx+ e^2 int e^(-2x) dx3x2+e22xdx=3x2dx+e2e2xdx

= 3*x^3/3 + e^2 int e^(-2x) dx=3x33+e2e2xdx

int e^(-2x) dx = -1/2e^(-2x)e2xdx=12e2x

:. F(x) = x^3 - e^2/2 * e^(-2x) +C

Since F(0) =1

0^3 - e^2/2 * e^(-2*0) +C =1

-e^2/2 *1 +C =1

C= 1+e^2/2

F(x) = x^3 - e^2/2 * e^(-2x) +1+e^2/2

= x^3 +e^2/2 (1-e^(-2x)) +1