f(x)=int(3x^3+xe^(x-2))dx.f(x)=∫(3x3+xex−2)dx.
=int3x^3dx+intxe^(x-2)dx=∫3x3dx+∫xex−2dx
=3(x^(3+1)/(3+1))+I, where, I=intxe^(x-2)dx,=3(x3+13+1)+I,where,I=∫xex−2dx,
:. f(x)=3/4x^4+I,................(ast).
To evaluate I, we use the following Method of Integration
by Parts (IBP).
(IBP) : intuvdx=uintvdx-int[(du)/dx*intvdx]dx.
We take, u=x rArr (du)/dx=1, &, v=e^(x-2) rArr intvdx=e^(x-2).
:. I=xe^(x-2)-int{1*e^(x-2)}dx,
:. I=xe^(x-2)-e^(x-2)=(x-1)e^(x-2).............(star).
(ast) and (star) rArr f(x)=3/4x^4+(x-1)e^(x-2)+C.
To determine C," we use the given cond. : "f(2)=3.
rArr 3/4(2)^4+(2-1)e^(3-2)+C=3 rArr C=-9-e
Therefore, f(x)=3/4x^4+(x-1)e^(x-2)-9-e.
Enjoy Maths.!