What is f(x) = int e^(5x-1)+x dxf(x)=e5x1+xdx if f(0) = -4 f(0)=4?

1 Answer
Sep 9, 2017

I tried this:

Explanation:

Given:
f(x)=int(e^(5x-1)+x)dxf(x)=(e5x1+x)dx
let us solve the integral:
f(x)=int(e^(5x-1))dx+intxdxf(x)=(e5x1)dx+xdx
f(x)=(e^(5x-1))/5+x^2/2+cf(x)=e5x15+x22+c
so now we need to evaluate the value of the constant cc. We know that at x=0x=0 we have: f(0)=-4f(0)=4 so using our function:
f(0)=-4=(e^(5*color(red)(0)-1))/5+color(red)(0)^2/2+cf(0)=4=e5015+022+c
-4=e^-1/5+c4=e15+c
so that:
c=-e^-1/5-4c=e154
and our function finally becomes:
f(x)=(e^(5x-1))/5+x^2/2-e^-1/5-4f(x)=e5x15+x22e154