What is f(x) = int sec^2x- cosx dxf(x)=sec2xcosxdx if f((5pi)/4) = 0 f(5π4)=0?

1 Answer
Dec 11, 2016

f(x)=tanx-sinx-(1+sqrt2/2)f(x)=tanxsinx(1+22)

Explanation:

int(sec^2x-cosx)dx(sec2xcosx)dx

f(x)=tanx-sinx+cf(x)=tanxsinx+c

f((5pi)/4)=tan((5pi)/4)-sin((5pi)/4)+c=0f(5π4)=tan(5π4)sin(5π4)+c=0

1-(-sqrt2/2)+c=01(22)+c=0

c=-(1+sqrt2/2)c=(1+22)

f(x)=tanx-sinx-(1+sqrt2/2)f(x)=tanxsinx(1+22)