What is f(x) = int sec^2x- cosx dxf(x)=∫sec2x−cosxdx if f((5pi)/4) = 0 f(5π4)=0? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer sjc Dec 11, 2016 f(x)=tanx-sinx-(1+sqrt2/2)f(x)=tanx−sinx−(1+√22) Explanation: int(sec^2x-cosx)dx∫(sec2x−cosx)dx f(x)=tanx-sinx+cf(x)=tanx−sinx+c f((5pi)/4)=tan((5pi)/4)-sin((5pi)/4)+c=0f(5π4)=tan(5π4)−sin(5π4)+c=0 1-(-sqrt2/2)+c=01−(−√22)+c=0 c=-(1+sqrt2/2)c=−(1+√22) f(x)=tanx-sinx-(1+sqrt2/2)f(x)=tanx−sinx−(1+√22) Answer link Related questions How do you find the constant of integration for intf'(x)dx if f(2)=1? What is a line integral? What is f(x) = int x^3-x if f(2)=4 ? What is f(x) = int x^2+x-3 if f(2)=3 ? What is f(x) = int xe^x if f(2)=3 ? What is f(x) = int x - 3 if f(2)=3 ? What is f(x) = int x^2 - 3x if f(2)=1 ? What is f(x) = int 1/x if f(2)=1 ? What is f(x) = int 1/(x+3) if f(2)=1 ? What is f(x) = int 1/(x^2+3) if f(2)=1 ? See all questions in Evaluating the Constant of Integration Impact of this question 1437 views around the world You can reuse this answer Creative Commons License