What is F(x) = int sin2xcos^2x-tan^3x dxF(x)=sin2xcos2xtan3xdx if F(pi/3) = 1 F(π3)=1?

1 Answer
Sep 22, 2016

F(x)=-cos^4x/2-tan^2x/2-lnabscosx+81/32-ln(2)F(x)=cos4x2tan2x2ln|cosx|+8132ln(2)

Explanation:

F(x)=int(sin2xcos^2x-tan^3x)dxF(x)=(sin2xcos2xtan3x)dx

Note that sin2x=2sinxcosxsin2x=2sinxcosx. Also, rewrite tan^3xtan3x as tanxtan^2x=tanx(sec^2x-1)tanxtan2x=tanx(sec2x1).

=2intsinxcos^3xdx-inttanx(sec^2x-1)dx=2sinxcos3xdxtanx(sec2x1)dx

=2intcos^3xsinxdx-inttanxsec^2xdx+inttanxdx=2cos3xsinxdxtanxsec2xdx+tanxdx

For the first integral, let u=cosxu=cosx so du=-sinxdxdu=sinxdx:

=-2intu^3du-inttanxsec^2xdx+inttanxdx=2u3dutanxsec2xdx+tanxdx

=-2(u^4/4)-inttanxsec^2xdx+inttanxdx=2(u44)tanxsec2xdx+tanxdx

=-cos^4x/2-inttanxsec^2xdx+inttanxdx=cos4x2tanxsec2xdx+tanxdx

Now, let v=tanxv=tanx so that dv=sec^2xdxdv=sec2xdx:

=-cos^4x/2-intvdv+inttanxdx=cos4x2vdv+tanxdx

=-cos^4x/2-v^2/2+inttanxdx=cos4x2v22+tanxdx

=-cos^4x/2-tan^2x/2+inttanxdx=cos4x2tan2x2+tanxdx

=-cos^4x/2-tan^2x/2+intsinx/cosxdx=cos4x2tan2x2+sinxcosxdx

Again, let w=cosxw=cosx so dw=-sinxdxdw=sinxdx:

=-cos^4x/2-tan^2x/2-int(dw)/w=cos4x2tan2x2dww

=-cos^4x/2-tan^2x/2-lnabsw=cos4x2tan2x2ln|w|

F(x)=-cos^4x/2-tan^2x/2-lnabscosx+CF(x)=cos4x2tan2x2ln|cosx|+C

Apply the original condition F(pi/3)=1F(π3)=1:

1=-cos^4(pi/3)/2-tan^2(pi/3)/2-lnabscos(pi/3)+C1=cos4(π3)2tan2(π3)2lncos(π3)+C

1=-(1/2)^4/2-(sqrt3)^2/2-ln(1/2)+C1=(12)42(3)22ln(12)+C

Note that ln(1/2)=ln(2^-1)=-ln(2)ln(12)=ln(21)=ln(2):

1=-(1/16)/2-3/2+ln(2)+C1=116232+ln(2)+C

32/32=-1/32-48/32+ln(2)+C3232=1324832+ln(2)+C

C=81/32-ln(2)C=8132ln(2)

Thus:

F(x)=-cos^4x/2-tan^2x/2-lnabscosx+81/32-ln(2)F(x)=cos4x2tan2x2ln|cosx|+8132ln(2)