What is F(x) = int (sin2xcos^2x-tanx)dx if F(pi/3) = 1 ?

1 Answer
Oct 9, 2016

F(x) = int (sin2xcos^2x-tanx)dx

F(x) = int sin2xcos^2xdx-inttanxdx=I_1-I_2

where I_1=int sin2xcos^2xdx and I_2=inttanxdx

I_1=int sin2xcos^2xdx
let " "cos^2x=u=>-2sinxcosxdx=du=>sin2xdx=-du

So I_1=-intudu=-u^2/2=-cos^4x/2

Again I_2=inttanxdx=logabs(secx)

Therefore

F(x)=I_1-I_2=-cos^4x/2-logabs(secx)+c

where c = integration constant

again it is given that F(pi/4)=1

F(pi/4)=-cos^4(pi/4)/2-logabs(sec(pi/4))+c

=>1=-(1/sqrt2)^4/2-logabs(sqrt2)+c

=>1=-1/8-1/2logabs(2)+c

=>c=1+1/8+1/2logabs(2)=9/8+1/2logabs(2)

Hence

F(x)==-cos^4x/2-logabs(secx)+9/8+1/2logabs(2)