What is f(x) = int x^2e^(2x-1)-x^3e^x dxf(x)=x2e2x1x3exdx if f(2) = 7 f(2)=7?

1 Answer
Oct 24, 2016

I got:

(x^2/2 - x/2 + 1/4)e^(2x - 1) - (x^3 - 3x^2 + 6x - 6)e^x - 5/4e^3 + 2e^2 + 7(x22x2+14)e2x1(x33x2+6x6)ex54e3+2e2+7


This has several integration by parts. But we do have access to an integral table.

int x^me^(ax)dx = 1/a x^me^(ax) - m/aint x^(m-1)e^(ax)dxxmeaxdx=1axmeaxmaxm1eaxdx for m >= 2m2
int xe^(ax)dx = 1/a^2e^(ax)(ax - 1) + Cxeaxdx=1a2eax(ax1)+C

So the first integral should give:

int x^2e^(2x-1)dxx2e2x1dx

= 1/2 x^2e^(2x-1) - int xe^(2x-1)dx=12x2e2x1xe2x1dx

= x^2/2e^(2x-1) - 1/4 e^(2x-1)(2x-1)=x22e2x114e2x1(2x1)

= x^2/2e^(2x-1) - x/2 e^(2x-1) + 1/4e^(2x - 1)=x22e2x1x2e2x1+14e2x1

= (x^2/2 - x/2 + 1/4)e^(2x - 1)=(x22x2+14)e2x1

and the second integral should give:

int x^3e^xdxx3exdx

= x^3e^x - 3intx^2e^xdx=x3ex3x2exdx

= x^3e^x - 3(x^2e^x - 2int xe^xdx)=x3ex3(x2ex2xexdx)

= x^3e^x - 3[x^2e^x - 2(e^x(x-1))]=x3ex3[x2ex2(ex(x1))]

= x^3e^x - 3x^2e^x + 6xe^x - 6e^x=x3ex3x2ex+6xex6ex

= (x^3 - 3x^2 + 6x - 6)e^x=(x33x2+6x6)ex

These two integral solutions combine to give:

color(green)((x^2/2 - x/2 + 1/4)e^(2x - 1) - (x^3 - 3x^2 + 6x - 6)e^x + C)(x22x2+14)e2x1(x33x2+6x6)ex+C

Further, you know that f(2) = 7f(2)=7, so set this equation equal to 77 at x = 2x=2:

((2)^2/2 - (2)/2 + 1/4)e^(2(2)-1) - ((2)^3 - 3(2)^2 + 6(2) - 6)e^(2) + C = 7((2)2222+14)e2(2)1((2)33(2)2+6(2)6)e2+C=7

(2 - 1 + 1/4)e^3 - (8 - 12 + 12 - 6)e^2 + C = 7(21+14)e3(812+126)e2+C=7

5/4e^3 - 2e^2 + C = 754e32e2+C=7

Thus, your integration constant is color(green)(C = -5/4e^3 + 2e^2 + 7)C=54e3+2e2+7, and your answer overall becomes:

color(blue)(int x^2e^(2x-1) - x^3e^xdx)x2e2x1x3exdx

= color(blue)((x^2/2 - x/2 + 1/4)e^(2x - 1) - (x^3 - 3x^2 + 6x - 6)e^x - 5/4e^3 + 2e^2 + 7)=(x22x2+14)e2x1(x33x2+6x6)ex54e3+2e2+7