What is f(x) = int (x+3)^2-3x dxf(x)=(x+3)23xdx if f(-1)=6 f(1)=6?

1 Answer
Dec 31, 2015

f(x) = x^3/3 +3/2x^2 +9x + 83/6f(x)=x33+32x2+9x+836

Explanation:

f(x) = int (x+3)^2 -3x dxf(x)=(x+3)23xdx if f(-1) = 0f(1)=0.

f(-1)f(1) is given to find the constant of integration and we shall use it after the integration.

int (x+3)^2 - 3x dx(x+3)23xdx

To simplify things we can expand (x+3)^2(x+3)2

(x+3)^2 = x^2+6x+9(x+3)2=x2+6x+9

int (x+3)^2 - 3x dx (x+3)23xdx
=int x^2 + 6x + 9 - 3x dx=x2+6x+93xdx
=int x^2 +3x + 9 dx=x2+3x+9dx
= x^(2+1)/(2+1) + 3x^(1+1)/(1+1) + 9x + C=x2+12+1+3x1+11+1+9x+C
=x^3/3 - 3x^2/2 + 9x + C=x333x22+9x+C

This is f(x) = x^3/3 + 3x^2/2 + 9x + Cf(x)=x33+3x22+9x+C

We are given f(-1) = 6f(1)=6 Let us use this

f(-1) = (-1)^3/3 +3(-1)^2/2 + 9(-1) + Cf(1)=(1)33+3(1)22+9(1)+C
6 = -1/3+3/2 - 9 + C6=13+329+C
6 = -2/6+9/6-54/6 + C6=26+96546+C
6=-47/6+C6=476+C
6+47/6=C6+476=C
36/6 + 47/6 = C366+476=C
83/6 = C836=C

f(x) = x^3/3 +3/2x^2 +9x + 83/6f(x)=x33+32x2+9x+836