What is #f(x) = int x-x^2secx dx# if #f(pi/4)=3 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer Guillaume L. Aug 13, 2018 #int(x-x^2)dx=x^2/2-x^3/3+3+pi^3/192-pi^2/32# if #f(pi/4)=3# Explanation: #I=int(x-x^2)dx# #=intxdx-intx^2dx# #=x^2/2-x^3/3+C#, #C in RR# Also, #f(pi/4)=3# #(pi/4)^2/2-(pi/4)^3/3+C=3# #C=3+pi^3/192-pi^2/32# Finally, #I=x^2/2-x^3/3+3+pi^3/192-pi^2/32# \0/ here's our answer ! Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1724 views around the world You can reuse this answer Creative Commons License