Here,
f(x)=I=intxcotx^2dx=intcotx^2*xdxf(x)=I=∫xcotx2dx=∫cotx2⋅xdx
Let, x^2=u=>2xdx=du=>xdx=1/2dux2=u⇒2xdx=du⇒xdx=12du
So,
I=intcotu*1/2duI=∫cotu⋅12du
=1/2ln|sinu|+c,where,u=x^2=12ln|sinu|+c,where,u=x2
=>f(x)=1/2ln|sinx^2|+c...to(A)
Given that,
f((5pi)/4)=0
=>1/2ln|sin((5pi)/4)^2|+c=0
=>2c=-ln|sin((25pi^2)/16)|
=>2c=ln|(1/(sin((25pi^2)/16)))|
=>c=1/2ln|(1/(sin((25pi^2)/16)))|...to(1)
Now,
(25xxpi^2)/16
~~15.42....
sin((25pi^2)/16)~~0.2659... in[-1,1]
1/(sin((25pi^2)/16))~~3.7606...
ln|1/(sin((25pi^2)/16))| ~~1.3245...
1/2*ln|1/(sin((25pi^2)/16))| ~~0.6623
Hence, from (1)
c ~~ 0.6623
Thus,
f(x)=1/2ln|sinx^2|+c,where, c~~0.6623