What is f(x) = int xe^(x+2)-x dxf(x)=xex+2xdx if f(-1) = 2 f(1)=2?

1 Answer
Aug 22, 2016

f(x)=xe^(x+2)-e^(x+2)-x^2/2+5/2+2ef(x)=xex+2ex+2x22+52+2e.

Explanation:

f(x)=int(xe^(x+2)-x)dx=intxe^(x+2)dx-intxdx=I-x^2/2f(x)=(xex+2x)dx=xex+2dxxdx=Ix22, where,

I=intxe^(x+2)dxI=xex+2dx.

To evaluate II, we use the Rule of Integration by Parts :

intuvdx=uintvdx-int[(du)/dxintvdx]dxuvdx=uvdx[dudxvdx]dx.

We take, u=x rArr (du)/dx=1u=xdudx=1, and,

v=e^(x+2) rArr intvdx=e^(x+2)v=ex+2vdx=ex+2. Hence,

I=xe^(x+2)-inte^(x+2)dx=xe^(x+2)-e^(x+2)I=xex+2ex+2dx=xex+2ex+2

:. f(x)=xe^(x+2)-e^(x+2)-x^2/2+C...........(1).

To determine C, we use the cond. : f(-1)=2 in (1).

:. -e-e-1/2+C=2 rArr C=5/2+2e. Therefore, (1) gives,

f(x)=xe^(x+2)-e^(x+2)-x^2/2+5/2+2e.

Enjoy Maths.!