f(x)=int(xe^(x+2)-x)dx=intxe^(x+2)dx-intxdx=I-x^2/2f(x)=∫(xex+2−x)dx=∫xex+2dx−∫xdx=I−x22, where,
I=intxe^(x+2)dxI=∫xex+2dx.
To evaluate II, we use the Rule of Integration by Parts :
intuvdx=uintvdx-int[(du)/dxintvdx]dx∫uvdx=u∫vdx−∫[dudx∫vdx]dx.
We take, u=x rArr (du)/dx=1u=x⇒dudx=1, and,
v=e^(x+2) rArr intvdx=e^(x+2)v=ex+2⇒∫vdx=ex+2. Hence,
I=xe^(x+2)-inte^(x+2)dx=xe^(x+2)-e^(x+2)I=xex+2−∫ex+2dx=xex+2−ex+2
:. f(x)=xe^(x+2)-e^(x+2)-x^2/2+C...........(1).
To determine C, we use the cond. : f(-1)=2 in (1).
:. -e-e-1/2+C=2 rArr C=5/2+2e. Therefore, (1) gives,
f(x)=xe^(x+2)-e^(x+2)-x^2/2+5/2+2e.
Enjoy Maths.!