What is f(x) = int xe^(x-3)dxf(x)=xex3dx if f(0)=-2 f(0)=2?

2 Answers
Jan 2, 2016

f(x) = xe^(x-3)-e^(x-3) + e^-3-2f(x)=xex3ex3+e32

Explanation:

f(x)=int xe^(x-3) dxf(x)=xex3dx

Use integration by parts

int u (dv) = uv - int v (du)u(dv)=uvv(du)

Selecting uu and dvdv is the first step we should take.

Let u=xu=x and dv = e^(x-3)dxdv=ex3dx

u=xu=x
du = dxdu=dx

dv = e^(x-3)dxdv=ex3dx

int dv = int e^(x-3)dxdv=ex3dx

v = e^(x-3)v=ex3

Now our integration becomes

f(x)=int xe^(x-3) dx = xe^(x-3) - int e^(x-3) dxf(x)=xex3dx=xex3ex3dx

int xe^(x-3) dx = xe^(x-3)-e^(x-3) + Cxex3dx=xex3ex3+C

f(x) = xe^(x-3)-e^(x-3) + Cf(x)=xex3ex3+C
Given f(0) = -2f(0)=2
f(0) = 0e^(0-3)-e^(0-3)+Cf(0)=0e03e03+C
-2=-e^-3+C2=e3+C
e^-3-2=Ce32=C

xe^(x-3)-e^(x-3) + e^-3-2xex3ex3+e32

Jan 2, 2016

f(x) = int_0^x te^{t-3} dt - 2f(x)=x0tet3dt2
= xe^{x-3} - e^{x-3} + e^{-3} - 2=xex3ex3+e32

Explanation:

Instead of using indefinite integration (refer to the other answer by Karthik), one can also use definite integration for this question. The integration is mostly the same.