What is f(x) = int xe^x-xsqrt(x^2+2)dxf(x)=xexxx2+2dx if f(0)=-2 f(0)=2?

1 Answer
Oct 3, 2017

f(x)f(x)=int xe^x*dxxexdx-int x*sqrt(x^2+2)*dxxx2+2dx

=x*e^xxex-int e^x*dxexdx-1/3*(x^2+2)^(3/2)+C13(x2+2)32+C

=(x-1)e^x(x1)ex-1/3*(x^2+2)^(3/2)+C13(x2+2)32+C

After imposing f(0)=-2f(0)=2 condition,

(0-1)*e^0-1/3*2^(3/2)+C=-2(01)e013232+C=2

C=(2sqrt(2))/3-1C=2231

Hence f(x)f(x)=(x-1)e^x(x1)ex-1/3*(x^2+2)^(3/2)+(2sqrt(2))/3-113(x2+2)32+2231

Explanation:

1) I took integral right side.

2) I imposed f(0)=-2f(0)=2 condition for finding CC.