What is f(x) = int xsin2x- sec4x dxf(x)=xsin2xsec4xdx if f(pi/12)=-2 f(π12)=2?

1 Answer

color(red)(f(x)=-1/2*x*cos 2x+1/4*sin 2x-1/4*ln(sec 4x+tan 4x)+(pisqrt3)/48-17/8+1/4*ln(2+sqrt3)f(x)=12xcos2x+14sin2x14ln(sec4x+tan4x)+π348178+14ln(2+3)

Explanation:

Given f(x)=int(x*sin 2x-sec 4x) dxf(x)=(xsin2xsec4x)dx if f(pi/12)=-2f(π12)=2

We do the integration separately

integration by parts for int(x sin 2x) dx(xsin2x)dx

Let u=xu=x and dv=sin 2x dxdv=sin2xdx
Let v=-1/2 cos 2x" "v=12cos2x and du=dxdu=dx

integration by parts formula

int u dv=uv-int v duudv=uvvdu

int(x sin 2x) dx=x*(-1/2 cos 2x)-int (-1/2 cos 2x) dx(xsin2x)dx=x(12cos2x)(12cos2x)dx

int(x sin 2x) dx=-x/2 cos 2x+1/4 sin 2x+C_1(xsin2x)dx=x2cos2x+14sin2x+C1

the other integral int sec 4x dxsec4xdx

use the formula
int sec u *du=ln (sec u+tan u)+C_2secudu=ln(secu+tanu)+C2

int sec 4x dx=1/4int sec 4x* 4*dx=1/4*ln (sec 4x+tan 4x)+C_2sec4xdx=14sec4x4dx=14ln(sec4x+tan4x)+C2

The combination

f(x)=int(x*sin 2x-sec 4x) dxf(x)=(xsin2xsec4x)dx

f(x)=-x/2 cos 2x+1/4 sin 2x-1/4*ln (sec 4x+tan 4x)+C_0f(x)=x2cos2x+14sin2x14ln(sec4x+tan4x)+C0

If f(pi/12)=-2f(π12)=2 we can solve for C_0C0

-2=-pi/12*1/2 cos 2(pi/12)+1/4 *sin 2(pi/12)-1/4*ln (sec 4(pi/12)+tan 4(pi/12))+C_02=π1212cos2(π12)+14sin2(π12)14ln(sec4(π12)+tan4(π12))+C0

-2=-pi/24* sqrt3/2+1/4 *1/2-1/4*ln (2+sqrt3)+C_02=π2432+141214ln(2+3)+C0

-2=(-pi* sqrt3)/48+1/8-1/4*ln (2+sqrt3)+C_02=π348+1814ln(2+3)+C0

C_0=(pi* sqrt3)/48-17/8+1/4*ln (2+sqrt3)C0=π348178+14ln(2+3)

Final answer

color(red)(f(x)=-x/2 cos 2x+1/4 sin 2x-1/4*ln (sec 4x+tan 4x)+(pi* sqrt3)/48-17/8+1/4*ln (2+sqrt3))f(x)=x2cos2x+14sin2x14ln(sec4x+tan4x)+π348178+14ln(2+3)

God bless...I hope the explanation is useful.