What is Heron's formula?

2 Answers
Jan 12, 2015

Heron's formula allows you to evaluate the area of a triangle knowing the length of its three sides.
The area AA of a triangle with sides of lengths a, ba,b and cc is given by:

A=sqrt(sp×(sp-a)×(sp-b)×(sp-c))A=sp×(spa)×(spb)×(spc)

Where spsp is the semiperimeter:

sp=(a+b+c)/2sp=a+b+c2

For example; consider the triangle:
enter image source here
The area of this triangle is A=(base×height)/2A=base×height2
So: A=(4×3)/2=6A=4×32=6
Using Heron's formula:
sp=(3+4+5)/2=6sp=3+4+52=6
And:
A=sqrt(6×(6-5)×(6-4)×(6-3))=6A=6×(65)×(64)×(63)=6

The demonstration of Heron's formula can be found in textbooks of geometry or maths or in many websites. If you need it have a look at:
http://en.m.wikipedia.org/wiki/Heron%27s_formula

Jun 15, 2018

Heron's Formula is usually the worst choice for finding the area of a triangle.

Explanation:

Alternatives:

Area SS of a triangle with sides a,b,ca,b,c

16S^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c)16S2=(a+b+c)(a+b+c)(ab+c)(a+bc)

Area SS of a triangle with squared sides A,B,CA,B,C

16S^2 = 4AB-(C-A-B)^2=(A+B+C)^2-2(A^2+B^2+C^2)16S2=4AB(CAB)2=(A+B+C)22(A2+B2+C2)

Area of a triangle with vertices (x_1, y_1), (x_2, y_2), (x_3, y_3)(x1,y1),(x2,y2),(x3,y3)

S = 1/2 | (x_1- x_3)(y_2 - y_3) - (x_2 - x_3)(y_1 - y_3)| = 1/2 | x_1 y_2 - x_2 y_1 + x_2 y_3 - x_3 y_2 + x_3 y_1 - x_1 y_3 |S=12|(x1x3)(y2y3)(x2x3)(y1y3)|=12|x1y2x2y1+x2y3x3y2+x3y1x1y3|

Oh yeah, Heron's Formula is

S = sqrt{s(s-a)(s-b)(s-c)}S=s(sa)(sb)(sc) where s=1/2(a+b+c)s=12(a+b+c)