What is int_0^pi sin^2(lnx)?

1 Answer
Jan 9, 2016

Guy, i wanted to sleep now... but the integral is so attractive...

Let's u = ln(x)
du = 1/xdx
dx = x du
x = e^u

inte^usin^2(u)du => (a)

by the way sin^2(u) = 1/2(1-cos(2u))

1/2inte^u(1-cos(2u))du

1/2(inte^udu - inte^ucos(2u)du) => (b)

We keep our interest on inte^ucos(2u)du because the first is trivial

by part :

v = e^u
dv = e^u
dw = cos(2u)
w = 1/2sin(2u)

at this point i consider intcos(2u)du as trivial too

= 1/2[sin(2u)e^u] - 1/2inte^usin(2u)du

by part again :

v = e^u
dv = e^u
dw = sin(2u)
w = -1/2cos(2u)

=-1/2[e^ucos(2u)]+1/2inte^ucos(2u)du

Now this is interesting

inte^ucos(2u)du = 1/2[sin(2u)e^u] - 1/2(-1/2[e^ucos(2u)]+1/2inte^ucos(2u)du)

inte^ucos(2u)du = 1/2[sin(2u)e^u] +1/4[e^ucos(2u)]-1/4inte^ucos(2u)du

adding 1/4inte^ucos(2u)du both side

5/4inte^ucos(2u)du = 1/2[sin(2u)e^u] +1/4[e^ucos(2u)]

inte^ucos(2u)du = 4/10[sin(2u)e^u] +1/5[e^ucos(2u)]

Introducing in (b)

1/2(inte^udu - (4/10[sin(2u)e^u] +1/5[e^ucos(2u)]))

1/2([e^u]- (4/10[sin(2u)e^u]+1/5[e^ucos(2u)]))

1/2[e^u] -2/10[sin(2u)e^u] -1/10[e^ucos(2u)]

Substitute back for u = ln(x)

1/2[x] -2/10[sin(2ln(x))x]_0^pi -1/10[xcos(2ln(x))]_0^pi

You can factorize by -1/10x and rewrite

1/2[x] -2/10[sin(2ln(x))x]-1/10[xcos(2ln(x))]

-1/10x(2sin(2ln(x))+cos(2ln(x))-5)

now apply

[-1/10x(2sin(2ln(x))+cos(2ln(x))-5)]_0^pi

=[-1/10pi(sin(2ln(pi))+cos(2ln(pi))-5)]