What is int 1/(1+4x^2) dx?

1 Answer
Feb 16, 2016

1/2tan^-1(2x)+C

Explanation:

Start with the trig identity:

sin^2theta+cos^2theta=1

If we divide this by cos^2theta we get

sin^2theta/cos^2theta+ cos^2theta/cos^2theta=1/cos^2theta

->tan^2theta +1 = sec^2theta

For integral, we can try the substitution:

2x = tan(u) From this we get:
-> 2dx = sec^2(u) du

Now putting this substitution into the integral:

int1/(1+4x^2)dx=1/2int sec^2(u)/(1+tan^2(du))du

Now using the trig identity on the bottom of the fraction we get:

1/2intsec^2(u)/sec^2(u)du = 1/2int du
Integrating then reversing the substitution gives us:

=1/2u+C=1/2tan^-1(2x)+C