What is int ((1+lnx)/x)^2dx(1+lnxx)2dx?

1 Answer
May 24, 2018

The answer is =-5/x-4ln(|x|)/x-(ln(|x|))^2/x+C=5x4ln(|x|)x(ln(|x|))2x+C

Explanation:

The integral is

I=int((1+lnx)^2dx)/x^2I=(1+lnx)2dxx2

=int((1+2lnx+(lnx)^2)dx)/x^2=(1+2lnx+(lnx)2)dxx2

=intdx/x^2+int(2lnxdx)/x^2+int((lnx)^2dx)/x^2=dxx2+2lnxdxx2+(lnx)2dxx2

=I_1+I_2+I_3=I1+I2+I3

Therefore,

I_1=intdx/x^2=intx^-2dx=-1/xI1=dxx2=x2dx=1x

For the calculation of I_2I2, perform an integration by parts

intuv'=uv-intu'v

u=lnx, =>, u'=1/x

v'=2/x^2, =>, v=-2/x

So,

I_2=-2lnx/x-2int(-dx)/x^2

=-2lnx/x-2/x

For the calculation of I_3, perform an integration by parts

u=(lnx)^2, =>, u'=2lnx/x

v'=1/x^2, =>, v=-1/x

I_3=-(lnx)^2/x-2int(-lnxdx)/x^2

=-(lnx)^2/x-2lnx/x-2/x

Finally,

I=I_1+I_2+I_3

=-1/x-2lnx/x-2/x-(lnx)^2/x-2lnx/x-2/x+C

=-5/x-4lnx/x-(lnx)^2/x+C