What is int 23/sqrt(13+3x^2) dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Tom Nov 12, 2015 23int1/sqrt(13+3x^2)dx x = sqrt(13/3)u dx = sqrt(13/3)du u = sqrt(3/13)x 23sqrt(13/3)int 1/sqrt(13+13u^2)du 23sqrt(13/3)*sqrt(1/13)int 1/sqrt(1+u^2)du 23sqrt(1/3)[arcsinh(u)]+C Substitute back 23sqrt(1/3)[arcsinh(sqrt(3/13)x)]+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1711 views around the world You can reuse this answer Creative Commons License