What is ∫ln(lnx)xdx?
1 Answer
Nov 3, 2015
Consider the following substitution.
Let:
∫ln(lnx)xdx=∫lntdt
Now we can do an integration by parts.
∫udv=uv−∫vdu
Let:
=lnt−∫t⋅1tdt
=tlnt−t
And now let's substitute back in our original variables.
=(lnx)ln(lnx)−lnx+C