What is int(lnx^3)/x^4 dx?

1 Answer
Dec 3, 2015

-(ln(x^3))/(3x^3)-1/(3x^3)+C=-(ln(x))/(x^3)-1/(3x^3)+C

Explanation:

Use integration-by-parts with u=ln(x^3)=3ln(x) and dv=1/(x^4)dx=x^(-4)dx to get du=3/x and v=x^(-3)/(-3).

Then, since int\ u\ dv=uv-int\ v\ du, we get

int\ (ln(x^3))/(x^4)\ dx= int\ (3ln(x))/(x^4)\ dx

=-(ln(x^3))/(3x^3)-int\ -x^(-4)\ dx=-(ln(x^3))/(3x^3)+int\ x^(-4)\ dx

=-(ln(x^3))/(3x^3)+(x^(-3))/(-3)+C

=-(ln(x^3))/(3x^3)-1/(3x^3)+C=-(ln(x))/(x^3)-1/(3x^3)+C