What is int(lnx^3)/x^4 dx? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Bill K. Dec 3, 2015 -(ln(x^3))/(3x^3)-1/(3x^3)+C=-(ln(x))/(x^3)-1/(3x^3)+C Explanation: Use integration-by-parts with u=ln(x^3)=3ln(x) and dv=1/(x^4)dx=x^(-4)dx to get du=3/x and v=x^(-3)/(-3). Then, since int\ u\ dv=uv-int\ v\ du, we get int\ (ln(x^3))/(x^4)\ dx= int\ (3ln(x))/(x^4)\ dx =-(ln(x^3))/(3x^3)-int\ -x^(-4)\ dx=-(ln(x^3))/(3x^3)+int\ x^(-4)\ dx =-(ln(x^3))/(3x^3)+(x^(-3))/(-3)+C =-(ln(x^3))/(3x^3)-1/(3x^3)+C=-(ln(x))/(x^3)-1/(3x^3)+C Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 1733 views around the world You can reuse this answer Creative Commons License