What is int_(pi/2)^pi lnsinx?

1 Answer
Dec 4, 2016

int_(pi/2)^pi ln(sin x)dx = pi/2ln(1/2)

Explanation:

Here you can see how to calculate that:

int_0^(pi/2) ln(sin x)dx = pi/2ln(1/2)

To calculate:

int_(pi/2)^pi ln(sin x)dx

just substitute:

t=pi-x

and you have:

int_(pi/2)^pi ln(sin x)dx = int_(pi/2)^0 ln(sin (pi-t))(-dt)=int_0^(pi/2) ln(sint)dt

because:

sin(pi-t) = sin t

and for the properties of the definite integral:

int_a^b f(x)dx = -int_b^a f(x)dx