We can solve this by expressing *sin ^2 (x)⋅sin2(x) in terms of a function in the first power.
From the equation:
cos 2x = cos ^ 2 (x) - sin^2 (x)cos2x=cos2(x)−sin2(x)
and the equation
sin^2 (x) + cos^2 (x) = 1 sin2(x)+cos2(x)=1
cos ^2 (x) = 1 - sin^2 (x)cos2(x)=1−sin2(x)
then. we substitute to the first equation
cos 2x = 1 - sin^2 (x) - sin ^2(x)cos2x=1−sin2(x)−sin2(x)
simplifying,
sin ^2 (x) = (1 - cos 2x)/ 2 sin2(x)=1−cos2x2
substitute to the original problem
int [(1-cos 2x)/2]dx∫[1−cos2x2]dx
(1/2)int(1 - cos 2x)dx(12)∫(1−cos2x)dx
(1/2)[ intdx - intcos 2xdx(12)[∫dx−∫cos2xdx
(1/2)[x - sin 2x*intd(2x)](12)[x−sin2x⋅∫d(2x)]
(1/2)[x - (sin 2x) * 2*1] (12)[x−(sin2x)⋅2⋅1]
x/2 - sin 2x + c x2−sin2x+c