What is the antiderivative of ln(2x)/x^(1/2)ln(2x)x12?

1 Answer
Jun 22, 2016

2 sqrt{x} ln(2x) -4 sqrt(x) + C2xln(2x)4x+C

Explanation:

IBP using int u v' = uv - int u' v

u = ln(2x), u' = 1/x
v' = x^{-1/2}, v = 2x^{1/2}

\implies 2 sqrt{x} ln(2x) - int (2 sqrt(x))/x \ dx

= 2 sqrt{x} ln(2x) - int 2/ sqrt(x) \ dx

= 2 sqrt{x} ln(2x) - 2 * 2 sqrt(x) + C

= 2 sqrt{x} ln(2x) -4 sqrt(x) + C