What is the antiderivative of ln(x)^2ln(x)2?

2 Answers
Jun 14, 2018

I=2x[lnx-1]+cI=2x[lnx1]+c

Explanation:

Here,

I=intln(x)^2dxI=ln(x)2dx

Using Power-coefficient Rule :

color(red)(lnx^n=n*lnxlnxn=nlnx , we get

I=intlnx^2dx=int2*lnx...to(A)

Using , Integration by parts:

color(blue)(int(u*v)dx=uintvdx-int(u'intvdx)dx

u=lnx and v=2=>u'=1/x and intvdx=2x

I=lnx*2x-int1/x*2xdx+c

=>I=2x*lnx-int2dx+c

=>I=2xlnx-2x+c

=>I=2x[lnx-1]+c
...........................................................................................................
Note:

If I=(lnx)^2 ,then

I=(lnx)^2*1dx

Using , Integration by parts:

u=(lnx)^2 and v=1=>u'=(2lnx)/x and intvdx=x

I=(lnx)^2int1dx-int(2lnx)/x*xdx

=(lnx)^2*x-int2*lnx

Using above result for (A)

I=x*(lnx)^2-{2x[lnx-1]}+c

Jun 14, 2018

2xlnx-x+C

Explanation:

The antiderivative of a function is basically the function's integral. So we get:

intln(x)^2 \ dx

I'm assuming that we have intlnx^2 \ dx.

Using logarithm rules, we get:

=int2lnx \ dx

=2intlnx \ dx

This is a common integral, where intlnx \ dx=xlnx-x+C.

:.=2xlnx-2x+C