What is the antiderivative of ln(x)^2ln(x)2?

1 Answer
Oct 25, 2016

int (lnx)^2dx = x(lnx)^2 +2x +C(lnx)2dx=x(lnx)2+2x+C

Explanation:

You should learn the IBP formula:
int u(dv)/dxdx=uv - int v (du)/dxdx udvdxdx=uvvdudxdx

So essentially we are looking for one function that simplifies when it is differentiated, and one that simplifies when integrated (or at least is integrable).

We also need to know that int lnxdx=xlnx-xlnxdx=xlnxx (either learn or use IBP):

Let {(u=lnx, => ,(du)/dx=1/x),((dv)/dx=lnx,=>,v =xlnx-x ):}

Then IBP gives;
int lnx lnx dx=lnx(xlnx-x) - int (xlnx-x)1/xdx
:. int (lnx)^2 dx = x(lnx)^2 - xlnx - int (lnx-1)dx
:. int (lnx)^2 dx = x(lnx)^2 - xlnx - (xlnx-x-x)
:. int (lnx)^2 dx = x(lnx)^2 - xlnx + xlnx +2x

And so we have:
:. int (lnx)^2dx = x(lnx)^2 +2x +C