What is the antiderivative of (ln x)^2/x^2?

1 Answer
Mar 17, 2016

intln^2(x)/x^2dx = -(ln^2(x)+2ln(x)+2)/x+C

Explanation:

First, we will use substitution

Let t = ln(x) => dt = 1/xdx and x = e^t

Then

intln^2(x)/x^2dx = intln^2(x)/x*1/xdx = intt^2e^-tdt

Next, we will use the integration by parts forumla
intudv = uv-intvdu

Integration by Parts 1:

Let u = t^2 and dv = e^-tdt
Then du = 2t and v = -e^-t

Applying the formula:
intt^2e^-tdt = -t^2e^-t+2intte^-tdt

Integration by Parts 2:
Focusing on the remaining integral...

Let u = t and dv = e^-tdt
Then du = dt and v = -e^-t

Applying the formula:
intte^-tdt = -te^-t + inte^-tdt

=-te^-t-e^-t+C

=-e^-t(t+1)+C

Substituting back, we have

intt^2e^-tdt = -t^2e^-t+2[-e^-t(t+1)]+C

=-e^-t(t^2+2t+2)+C

Finally, substituting x back in gives our final result:

intln^2(x)/x^2dx = -(ln^2(x)+2ln(x)+2)/x+C