What is the antiderivative of xlnx?

1 Answer
Sep 21, 2016

intxlnxdx=x^2/4(2lnx-1)+C, or, x^2/4ln(x^2/e)+C, or ln(x^2/e)^(x^2/4)+C.

Explanation:

Let I=intxlnxdx

We use the following Rule of Integration by Parts (IBP) :

intuvdx=uintvdx-int[(du)/dxintvdx]dx. We take,

u=lnx rArr (du)/dx=1/x, and, v=x rArr intvdx=intxdx=x^2/2.

Hence,

I=x^2/2lnx-int[1/x*x^2/2]dx

=x^2/2lnx-1/2intxdx

=x^2/2lnx-1/2(x^2/2)

=x^2/2lnx-x^2/4

=x^2/4(2lnx-1), or,

=x^2/4(lnx^2-lne)

=x^2/4ln(x^2/e), or,

=ln(x^2/e)^(x^2/4).

Enjoy Maths.!