What is the arc length of f(x)= 1/(2+x) on x in [1,2] ?

1 Answer
May 22, 2018

L=1+sum_(n=1)^oo((1/2),(n))1/(4n-1)(1/3^(4n-1)-1/4^(4n-1))

Explanation:

f(x)=1/(2+x)

f'(x)=-1/(2+x)^2

Arc length is given by:

L=int_1^2sqrt(1+1/(2+x)^4)dx

Apply the substitution 2+x=u:

L=int_3^4sqrt(1+1/u^4)du

For u in [3,4], 1/u^4<1. Take the series expansion of the square root:

L=int_3^4sum_(n=0)^oo((1/2),(n))1/u^(4n)du

Isolate the n=0 term and simplify:

L=int_3^4du+sum_(n=1)^oo((1/2),(n))int_3^4 1/u^(4n)du

The remaining integrals are trivial:

L=1+sum_(n=1)^oo((1/2),(n))1/(1-4n)[1/u^(4n-1)]_3^4

Simplify:

L=1+sum_(n=1)^oo((1/2),(n))1/(4n-1)(1/3^(4n-1)-1/4^(4n-1))