What is the arc length of f(x)= 1/x on x in [1,2] ?
1 Answer
Jun 28, 2018
Explanation:
f(x)=1/x
f'(x)=-1/x^2
Arc length is given by:
L=int_1^2sqrt(1+1/x^4)dx
For
L=int_1^2sum_(n=0)^oo((1/2),(n))1/x^(4n)dx
Simplify:
L=sum_(n=0)^oo((1/2),(n))int_1^2x^(-4n)dx
Integrate directly:
L=sum_(n=0)^oo((1/2),(n))[x^(1-4n)]_1^2/(1-4n)
Isolate the
L=1+sum_(n=1)^oo((1/2),(n))1/(4n-1)(1-1/2^(4n-1))