What is the arc length of f(x)= 1/x on x in [1,2] ?

1 Answer
Jun 28, 2018

L=1+sum_(n=1)^oo((1/2),(n))1/(4n-1)(1-1/2^(4n-1)) units.

Explanation:

f(x)=1/x

f'(x)=-1/x^2

Arc length is given by:

L=int_1^2sqrt(1+1/x^4)dx

For x in [1,2], 1/x^4<1. Take the series expansion of the square root:

L=int_1^2sum_(n=0)^oo((1/2),(n))1/x^(4n)dx

Simplify:

L=sum_(n=0)^oo((1/2),(n))int_1^2x^(-4n)dx

Integrate directly:

L=sum_(n=0)^oo((1/2),(n))[x^(1-4n)]_1^2/(1-4n)

Isolate the n=0 term and simplify:

L=1+sum_(n=1)^oo((1/2),(n))1/(4n-1)(1-1/2^(4n-1))