What is the arc length of f(x) = -cscx on x in [pi/12,(pi)/8] ?
1 Answer
Explanation:
f(x)=-cscx
f'(x)=cscxcotx
Arc length is given by:
L=int_(pi/12)^(pi/8)sqrt(1+csc^2xcot^2x)dx
Rearrange:
L=int_(pi/12)^(pi/8)cscxcotxsqrt(1+sin^2xtan^2x)dx
For
L=int_(pi/12)^(pi/8)cscxcotx{sum_(n=0)^oo((1/2),(n))(sinxtanx)^(2n)}dx
Isolate the
L=int_(pi/12)^(pi/8)cscxcotxdx+sum_(n=1)^oo((1/2),(n))int_(pi/12)^(pi/8)(sinxtanx)^(2n-1)dx
Rearrange:
L=[-cscx]_ (pi/12)^(pi/8)+sum_(n=1)^oo((1/2),(n))int_(pi/12)^(pi/8)(secx-1/secx)^(2n-1)dx
Apply binominal expansion:
L=csc(pi/12)-csc(pi/8)+sum_(n=1)^oo((1/2),(n))int_(pi/12)^(pi/8)sum_(k=0)^(2n-1)((2n-1),(k))(secx)^(2n-1-k)(-1/secx)^kdx
Rearrange:
L=csc(pi/12)-csc(pi/8)+sum_(n=1)^oosum_(k=0)^(2n-1)((1/2),(n))((2n-1),(k))(-1)^kint_(pi/12)^(pi/8)sec^(2(n-k)-1)xdx