What is the arc length of f(x) = -cscx on x in [pi/12,(pi)/8] ?

1 Answer
Jun 2, 2018

L=csc(pi/12)-csc(pi/8)+sum_(n=1)^oosum_(k=0)^(2n-1)((1/2),(n))((2n-1),(k))(-1)^kint_(pi/12)^(pi/8)sec^(2(n-k)-1)xdx units.

Explanation:

f(x)=-cscx

f'(x)=cscxcotx

Arc length is given by:

L=int_(pi/12)^(pi/8)sqrt(1+csc^2xcot^2x)dx

Rearrange:

L=int_(pi/12)^(pi/8)cscxcotxsqrt(1+sin^2xtan^2x)dx

For x in [pi/12,pi/8], sin^2xtan^2x<1. Take the series expansion of the square root:

L=int_(pi/12)^(pi/8)cscxcotx{sum_(n=0)^oo((1/2),(n))(sinxtanx)^(2n)}dx

Isolate the n=0 term:

L=int_(pi/12)^(pi/8)cscxcotxdx+sum_(n=1)^oo((1/2),(n))int_(pi/12)^(pi/8)(sinxtanx)^(2n-1)dx

Rearrange:

L=[-cscx]_ (pi/12)^(pi/8)+sum_(n=1)^oo((1/2),(n))int_(pi/12)^(pi/8)(secx-1/secx)^(2n-1)dx

Apply binominal expansion:

L=csc(pi/12)-csc(pi/8)+sum_(n=1)^oo((1/2),(n))int_(pi/12)^(pi/8)sum_(k=0)^(2n-1)((2n-1),(k))(secx)^(2n-1-k)(-1/secx)^kdx

Rearrange:

L=csc(pi/12)-csc(pi/8)+sum_(n=1)^oosum_(k=0)^(2n-1)((1/2),(n))((2n-1),(k))(-1)^kint_(pi/12)^(pi/8)sec^(2(n-k)-1)xdx