What is the arc length of f(x)=lnx in the interval [1,5]?

1 Answer
Mar 7, 2018

The arc length is sqrt26-sqrt2+ln5-ln((1+sqrt26)/(1+sqrt2)) units.

Explanation:

f(x)=lnx

f'(x)=1/x

Arc length is given by:

L=int_1^5sqrt(1+1/x^2)dx

Rearrange:

L=int_1^5sqrt(x^2+1)/xdx

Apply the substitution x=tantheta:

L=intsectheta/tantheta*sec^2thetad theta

Rewrite as:

L=intcsctheta*(tan^2theta+1)d theta

Hence

L=int(secthetatantheta+csctheta)d theta

Integrate term by term:

L=[sectheta-ln|csctheta+cottheta|]

Reverse the substitution:

L=[sqrt(1+x^2)-ln|(1+sqrt(1+x^2))/x|]_1^5

Insert the limits of integration:

L=sqrt26-sqrt2+ln5-ln((1+sqrt26)/(1+sqrt2))