What is the arc length of f(x)=lnx in the interval [1,5]?
1 Answer
Mar 7, 2018
The arc length is
Explanation:
f(x)=lnx
f'(x)=1/x
Arc length is given by:
L=int_1^5sqrt(1+1/x^2)dx
Rearrange:
L=int_1^5sqrt(x^2+1)/xdx
Apply the substitution
L=intsectheta/tantheta*sec^2thetad theta
Rewrite as:
L=intcsctheta*(tan^2theta+1)d theta
Hence
L=int(secthetatantheta+csctheta)d theta
Integrate term by term:
L=[sectheta-ln|csctheta+cottheta|]
Reverse the substitution:
L=[sqrt(1+x^2)-ln|(1+sqrt(1+x^2))/x|]_1^5
Insert the limits of integration:
L=sqrt26-sqrt2+ln5-ln((1+sqrt26)/(1+sqrt2))