What is the arc length of f(x)=x^2-2x+35 on x in [1,7]?

1 Answer
Mar 7, 2018

The arc length is 3sqrt(145)+1/4ln(12+sqrt145) units.

Explanation:

y=x^2-2x+35

y'=2x-2

Arc length is given by:

L=int_1^7sqrt(1+(2x-2)^2)dx

Apply the substitution 2x-2=tantheta:

L=1/2intsec^3thetad theta

This is a known integral. If you do not have it memorized apply integration by parts or look it up in a table of integrals:

L=1/4[secthetatantheta+ln|sectheta+tantheta|]

Reverse the substitution:

L=1/4[(2x-2)sqrt(1+(2x-2)^2)+ln|(2x-2)+sqrt(1+(2x-2)^2)|]_1^7

Insert the limits of integration:

L=3sqrt(145)+1/4ln(12+sqrt145)