What is the arc length of f(x)= x ^ 3 / 6 + 1 / (2x) on x in [1,3]?

1 Answer
Nov 11, 2015

14/3 approx 4.667

Explanation:

If f : x mapsto x^3/6 + 1/(2x), the length is
L=int_1^3 sqrt(1+f'(x)^2) dx.

Because f'(x) = x^2/2 - 1/(2x^2) = (x^4-1)/(2x^2), you have
f'(x)^2+1 = (x^8-2x^4+1)/(4x^4) + 1 = (x^8+2x^4+1)/(4x^4) = ((x^4+1)/(2x^2))^2,
so, you can write
L=int_1^3 (x^4+1)/(2x^2) dx = int_1^3 (x^2/2 + 1/(2x^2)) dx
L = [x^3/6 - 1/(2x)]_1^3 = 14/3