What is the arc length of f(x) =x -tanx on x in [pi/12,(pi)/8] ?

1 Answer
Jun 27, 2018

L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))1/(1+4n+2m)(tan^(1+4n+2m)(pi/8)-tan^(1+4n+2m)(pi/12)) units.

Explanation:

f(x)=x-tanx

f'(x)=-tan^2x

Arc length is given by:

L=int_(pi/12)^(pi/8)sqrt(1+tan^4x)dx

For x in [pi/12,pi/8], tan^4x<1. Take the series expansion of the square root:

L=int_(pi/12)^(pi/8)sum_(n=0)^oo((1/2),(n))tan^(4n)xdx

Isolate the n=0 term and simplify:

L=int_(pi/12)^(pi/8)dx+sum_(n=1)^oo((1/2),(n))int_(pi/12)^(pi/8)tan^(4n)xdx

Apply the substitution tanx=u:

L=pi/8-pi/12+sum_(n=1)^oo((1/2),(n))intu^(4n)/(u^2+1)du

Take the series expansion of 1/(u^2+1):

L=pi/24+sum_(n=1)^oo((1/2),(n))intu^(4n){sum_(m=0)^oo((-1),(m))u^(2m))}du

Simplify:

L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))intu^(4n+2m)du

Integrate directly:

L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))([u^(1+4n+2m)])/(1+4n+2m)

Reverse the last substitution:

L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))1/(1+4n+2m)[tan^(1+4n+2m)x]_(pi/12)^(pi/8)

Insert the limits of integration:

L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))1/(1+4n+2m)(tan^(1+4n+2m)(pi/8)-tan^(1+4n+2m)(pi/12))