What is the arc length of f(x) =x -tanx on x in [pi/12,(pi)/8] ?
1 Answer
Explanation:
f(x)=x-tanx
f'(x)=-tan^2x
Arc length is given by:
L=int_(pi/12)^(pi/8)sqrt(1+tan^4x)dx
For
L=int_(pi/12)^(pi/8)sum_(n=0)^oo((1/2),(n))tan^(4n)xdx
Isolate the
L=int_(pi/12)^(pi/8)dx+sum_(n=1)^oo((1/2),(n))int_(pi/12)^(pi/8)tan^(4n)xdx
Apply the substitution
L=pi/8-pi/12+sum_(n=1)^oo((1/2),(n))intu^(4n)/(u^2+1)du
Take the series expansion of
L=pi/24+sum_(n=1)^oo((1/2),(n))intu^(4n){sum_(m=0)^oo((-1),(m))u^(2m))}du
Simplify:
L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))intu^(4n+2m)du
Integrate directly:
L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))([u^(1+4n+2m)])/(1+4n+2m)
Reverse the last substitution:
L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))1/(1+4n+2m)[tan^(1+4n+2m)x]_(pi/12)^(pi/8)
Insert the limits of integration:
L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))1/(1+4n+2m)(tan^(1+4n+2m)(pi/8)-tan^(1+4n+2m)(pi/12))