What is the arc length of f(x)=xe^(2x-3) on x in [3,4] ?

1 Answer
May 22, 2018

L=4e^5-3e^3+1/2sum_(n=1)^oo((1/2),(n))int_3^5(e^(4-u)/u)^(2n-1)dx

Explanation:

f(x)=xe^(2x-3)

f'(x)=(2x+1)e^(2x-3)

Arc length is given by:

L=int_3^4sqrt(1+(f'(x))^2)dx

Rearrange:

L=int_3^4f'(x)sqrt(1+(f'(x))^-2)dx

For x in [3,4], (f'(x))^-2<1. Take the series expansion of the square root:

L=int_3^4f'(x){sum_(n=0)^oo((1/2),(n))(f'(x))^(-2n)}dx

Isolate the n=0 term and simplify:

L=int_3^4f'(x)dx+sum_(n=1)^oo((1/2),(n))int_3^4(f'(x))^(1-2n)dx

Hence

L=f(4)-f(3)+sum_(n=1)^oo((1/2),(n))int_3^4((2x+1)e^(2x-3))^(1-2n)dx

Apply the substitution 2x+1=u:

L=4e^5-3e^3+1/2sum_(n=1)^oo((1/2),(n))int_3^5(e^(4-u)/u)^(2n-1)dx