What is the arc length of f(x)=xe^(2x-3) on x in [3,4] ?
1 Answer
May 22, 2018
Explanation:
f(x)=xe^(2x-3)
f'(x)=(2x+1)e^(2x-3)
Arc length is given by:
L=int_3^4sqrt(1+(f'(x))^2)dx
Rearrange:
L=int_3^4f'(x)sqrt(1+(f'(x))^-2)dx
For
L=int_3^4f'(x){sum_(n=0)^oo((1/2),(n))(f'(x))^(-2n)}dx
Isolate the
L=int_3^4f'(x)dx+sum_(n=1)^oo((1/2),(n))int_3^4(f'(x))^(1-2n)dx
Hence
L=f(4)-f(3)+sum_(n=1)^oo((1/2),(n))int_3^4((2x+1)e^(2x-3))^(1-2n)dx
Apply the substitution
L=4e^5-3e^3+1/2sum_(n=1)^oo((1/2),(n))int_3^5(e^(4-u)/u)^(2n-1)dx