What is the arclength of f(x)=e^(x^2-x) f(x)=ex2x in the interval [0,15][0,15]?

1 Answer
Mar 28, 2017

The general formula for Arc Length of a function of x is:

L = int_a^bsqrt(1+(f'(x))^2)dx

Explanation:

Given f(x)=e^(x^2-x)

Find the Arc Length in the interval [0,15]

Compute f'(x)

f'(x) = (2x-1)e^(x^2-x)

(f'(x))^2=(4x^2-4x+1)e^(2x^2-2x)

I used WolframAlpha to calculate this:

L = int_0^15sqrt(1+(4x^2-4x+1)e^(2x^2-2x))dx~~1.59xx10^91