What is the arclength of f(x)=(x^2+24x+1)/x^2 f(x)=x2+24x+1x2 in the interval [1,3][1,3]?

1 Answer
Jul 12, 2018

approx 17.06043125917.060431259

Explanation:

Given f(x)=(x^2+24x+1)/x^2f(x)=x2+24x+1x2
we differentiate this function with respect to xx using the Quotient rule

(u/v)'=(u'v-uv')/v^2

so we get

f'(x)=((2x+24)x^2-(x^2+24x+1)2x)/x^4
cancelling xne 0

f'(x)=(2x^2+24x-2x^2-48x-2)/x^3

f'(x)=(-2(12x+1))/x^3

so we get

int_1^3sqrt(1+(-2(12x+1)/x^3)^2)dx
by a numerical method we get 17.06031259