f(x) = (x^2-2x)/(2-x) ; x in [-2,-1]
f'(x) = ((2x-2)(2-x)-(x^2-2x)(-1))/(2-x)^2 or
f'(x) = ((2x-2)(2-x)+(x^2-2x))/(2-x)^2 or
f'(x) = ((2x-2)(2-x)+x(x-2))/(2-x)^2 or
f'(x) = ((2-x)(2x-2-x))/(2-x)^2 or
f'(x) = ((2-x)(x-2))/(2-x)^2=(x-2)/(2-x)=-1
:. [f'(x)]^2=1 . Total length of the arc from x = a to x = b is
int_a^b sqrt(1+[f'(x)]^2)dx
L=int_(-2)^(-1) sqrt(1+1)dx or
L=int_(-2)^(-1) sqrt(2) dx or
L=sqrt2 [x]_-2^-1or L= sqrt2[-1-(-2)] or
L= sqrt2[-1+2] =sqrt2
Arc length of f(x) is sqrt2 unit. [Ans]