What is the arclength of f(x)=x-sqrt(x+3) on x in [1,3]?
1 Answer
Explanation:
f(x)=x-sqrt(x+3)
f'(x)=1-1/(2sqrt(x+3))
Arclength is given by:
L=int_1^3sqrt(1+(1-1/(2sqrt(x+3)))^2)dx
Apply the substitution
L=int_4^(2sqrt6)sqrt(1+(1-1/u)^2)(1/2udu)
Simplify:
L=1/2int_4^(2sqrt6)sqrt(2u^2-2u+1)du
Complete the square in the square root:
L=1/(2sqrt2)int_4^(2sqrt6)sqrt((2u-1)^2+1)du
Apply the substitution
L=1/(4sqrt2)intsec^3thetad theta
This is a known integral. If you do not have it memorized apply integration by parts or look it up in a table of integrals:
L=1/(8sqrt2)[secthetatantheta+ln|sectheta+tantheta|]
Reverse the substitution:
L=1/(8sqrt2)[(2u-1)sqrt((2u-1)^2+1)+ln|(2u-1)+sqrt((2u-1)^2+1)|]_4^(2sqrt6)
Insert the limits of integration:
L=(4sqrt6-1)/(8sqrt2)sqrt((4sqrt6-1)^2+1)-35/8+1/(8sqrt2)ln((4sqrt6-1+sqrt((4sqrt6-1)^2+1))/(7+5sqrt2))