What is the derivative of (12/sinx) + (1/cotx)(12sinx)+(1cotx)?

1 Answer
Sep 16, 2015

−12cosecx⋅cotx+sec^2x12cosecxcotx+sec2x

Explanation:

1/sin xsinx = cosec xcosecx similarly 1/cotx1cotx = tanxtanx
the question changes to 12cosecx+tanx12cosecx+tanx
the derivative is -12cosecx*cotx+sec^2x12cosecxcotx+sec2x by (u/v rule of differentiation)
d/dxddx (1/sinx)(1sinx) = 1/sin^2x1sin2x (-1*cosx)(1cosx)
= -cosx/sinxcosxsinx 1/sinx1sinx
=-cosecx cotxcosecxcotx
d/dxddx tanxtanx= d/dx(sinx/cosx)ddx(sinxcosx)
=1/cos^2x1cos2x (cosx*cosx-sinx*(-sinx))(cosxcosxsinx(sinx))
=(cos^2x+sin^2x)/cos^2xcos2x+sin2xcos2x
=1/cos^2x1cos2x=sec^2xsec2x