What is the derivative of csc2(x)?

1 Answer
Apr 13, 2018

ddx[csc2(x)]=2cotxcsc2x

Explanation:

csc2(x)=1sin2(x)

ddx[csc2(x)]=ddx[1sin2(x)]

ddx[1sin2(x)]=ddx[[sin(x)]2]

let u=sinx

ddx[[sin(x)]2]=ddu[u2]ddx[sinx]

ddu[u2]=2u3

ddx[sinx]=cosx

ddx[[sin(x)]2]=2u3cosx=2cosxsin3x

cosxsinx=cotx2cosxsin3x=2cotxsin2x

1sin2x=csc2x2cotxcsc2x

ddx[csc2(x)]=2cotxcsc2x